Enhanced Locomotion Efficiency of a Bio-inspired Walking Robot using Contact Surfaces with Frictional Anisotropy
نویسندگان
چکیده
Based on the principles of morphological computation, we propose a novel approach that exploits the interaction between a passive anisotropic scale-like material (e.g., shark skin) and a non-smooth substrate to enhance locomotion efficiency of a robot walking on inclines. Real robot experiments show that passive tribologically-enhanced surfaces of the robot belly or foot allow the robot to grip on specific surfaces and move effectively with reduced energy consumption. Supplementing the robot experiments, we investigated tribological properties of the shark skin as well as its mechanical stability. It shows high frictional anisotropy due to an array of sloped denticles. The orientation of the denticles to the underlying collagenous material also strongly influences their mechanical interlocking with the substrate. This study not only opens up a new way of achieving energy-efficient legged robot locomotion but also provides a better understanding of the functionalities and mechanical properties of anisotropic surfaces. That understanding will assist developing new types of material for other real-world applications.
منابع مشابه
Using a Biological Material to Improve Locomotion of Hexapod Robots
Animals can move in not only elegant but also energy efficient ways. Their skin is one of the key components for this achievement. It provides a proper friction for forward motion and can protect them from slipping on a surface during locomotion. Inspired by this, we applied real shark skin to the foot soles of our hexapod robot AMOS. The material is formed to cover each foot of AMOS. Due to sh...
متن کاملAutonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot.
Soft robotics offers the unique promise of creating inherently safe and adaptive systems. These systems bring man-made machines closer to the natural capabilities of biological systems. An important requirement to enable self-contained soft mobile robots is an on-board power source. In this paper, we present an approach to create a bio-inspired soft robotic snake that can undulate in a similar ...
متن کاملMultiple-objective Optimization of Serpentine Locomotion with Snake Robot by Using the NSGA
This paper starts with developing kinematic and dynamic model of a snake shape robot in serpentine locomotion and finishes with actual experimentation. At the beginning the symmetrical and unsymmetrical serpenoid curves are introduced. Kinematics and dynamics of a snake robot on flat and inclined surfaces are obtained for a general n-link robot. SimMechanics toolbox of MATLAB software is employ...
متن کاملReal-time Walking Pattern Generation for a Biped Robot with a Hybrid CPG-ZMP Algorithm
Biped robots have better mobility than conventional wheeled robots. The bio-inspired method based on a central pattern generator (CPG) can be used to control biped robot walking in a manner like human beings. However, to achieve stable locomotion, it is difficult to modulate the parameters for the neural networks to coordinate every degree of freedom of the walking robot. The zero moment point ...
متن کاملCurved Surface Patches for Rough Terrain Perception
Attaining animal-like legged locomotion on rough outdoor terrain with sparse foothold affordances — a primary use-case for legs vs other forms of locomotion — is a largely open problem. New advancements in control and perception have enabled bipeds to walk on flat and uneven indoor environments. But tasks that require reliable contact with unstructured world surfaces, for example walking on nat...
متن کامل